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Introduction

» Superparamagnetic relaxometry (SPMR) is an
emerging technology that holds potential for use as
a second-line screening modality to improve early
cancer detection.

+ Measurement of the magnetic field after the
excitation of cancer-bound superparamagnetic iron
oxide nanoparticles (SPIONs) enables the
reconstruction of SPIONs spatial distribution and
hence tumor detection.

+ Challenges:

o Image reconstruction requires solving an ill-
posed inverse problem.

o Additional image processing module is
required to automatically detect and localize
the tumor.

« Approach:

Direct classification of the SPMR signal (without

image reconstruction) using data-driven

Gaussian process (GP) method.

SPMR Measurement

The device used in our study was a 7-channel pre-clinical
magnetic relaxometry system (MagSense, Imagion
Biosystems, Inc.), shown in Fig. 1 (a).
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Figure 1: (2] MagSense device (Imagion Biosystems, Inc.). (b) Schematic of
forward model described in Eq. {1)
« Excitation phase: SPIONs are excited using an external
field generated by a Helmholtz magnetizing coil.

* Relaxation phase: Sensitive superconducting quantum
interference devices (SQUIDs) are switched on to
detect the decay of magnetic moment induced by
excited SPIONs.

b= Ax +v (0

b : Vector of relaxation amplitudes, i.e., the difference
in the magnetic field before and after relaxation.

& : Vector of magnetic moments at voxels shown in Fig. 1 (b).

A : System transformation matrix
I/ : measurement noise

Gaussian Process Classification

A GP model is trained with several samples of in silico or

phantom measurements labeled

with their class (+1 for with and -1 for without surrogate tumor source). The probability of
classes can then be obtained for a new SPMR measurement.
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Figure 2: Top panel: the workflow of training and validation of a GP classification model. Botlom panel: An example GP classifier
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Compressed Sensing Approach

Image reconstruction (ImR) can be performed based on compressed sensing method and
the surrogate tumor source can be detected and localized by processing the reconstructed

image.
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Figure 3: ImR basad classiication approach. A lasso estimate of moment vector is obtained and the resulting image is processed to

detect the surrogate tumor source.

Results

In silico studies:

Forward model (Eq. (1)) was
used to generate SPMR
signals
The geometry and source - :
locations are consistent with -
the pre-clinical mouse cancer
model.

Several samples of SPMR
measurements were
generated for evaluating both
classification approaches.
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Figure 4: in silico signal genaravon sewp.

Classification accuracy:
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Figure 5: True positive (TP) and false negalive (FN) rates when there is no background
SPIONs. ), s the coeflicient of variation (refative standard deviation) of the
measurement noise,
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Figure 6: True positive (TP) and false negative (FN) rates when 8-9% background
SPIONs are randomly distributed.
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Phantom studies:

The strong source (surrogate liver)
was simulated by clustering together
nine cotton swabs containing a total
of 150 j1g of immobilized 25-nm
Fe304 SPIONs (PrecisionMRX;
Imagion Biosystems).

The weak source (surrogate tumor)
was represented by a single cotton
swab containing either 6.3, 9.4, or
14.4 ;g of immobilized PrecisionMRX
SPIONS.

An additional nine cotton swabs
containing a total of 32 g of
immobilized PrecisionMRX SPIONs
(<5119 per swab) were evenly
distributed within the scan plane to
represent background SPIONs.

Figure 7: Phantom experiment setup

We collected 14 data points by moving tumor phantom to 14 different
positions. Also, 10 additional data points were collected without using
the tumor phantom.

Classification accuracy: GP vs ImR approach

Weak source phantom: 14.44 (ig

GP approach: TP:3, FP=0, TN=3, FN=0 ImR approach; TP:2, FP=0, TN=3, FN=1

Figure 8: GP-based (left panel) and ImR-based (rght panel) classification resulls when 14 .44 (14
surrogate lumor phaniom s used

Weak source phantom: 9.4 /19
ImR approach; TP:0, FP=0, TN=3, FN=3

GP approach: TP:3, FP=2, TN=1, FN=0
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Figure 9: GP-based (left panel) and ImR-based (right panel) classification results when 9.4 [1§ surrcgale
umor phantom s used
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Conclusion

* Inour in silico source detection analysis, and for realistic
noise levels, we were able to achieve overall
classification accuracies above 90% when >5% of total
SPIONs were concentrated at the surrogate tumor.

* In our phantom studies, we were able to detect the
surrogate tumor phantoms with 5% and 7.3% of the
total used SPIONs, surrounded by 9 low-concentration
phantoms with accuracies of 87.5% and 96.4%,
respectively.

« The GP framework provides acceptable classification
accuracies when dealing with in silico and phantom
SPMR datasets and can outperform an image
reconstruction method for binary classification of SPMR
data.

* In addition to measurement noise, existence of the
background SPIONs can reduce the classification
accuracies in both ImR and GP based approaches.

*  Future work:

» Prior knowledge of the SPIONs distribution can
significantly improve the classification accuracy.
This necessitates development of a biodistribution
kinetics model and integration of the model into
classification framework for in vivo applications.

+ Since the concentration of tumor-bound SPIONs
may be very low for small tumors at the early
stage of the cancer, more advanced deep learming
techniques should be implemented to reliably
classify SPMR measurements.
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