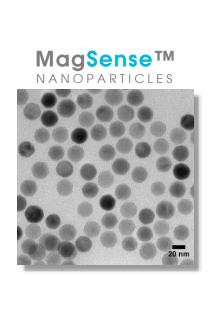
Superparamagnetic relaxometry (SPMR) for sensitive detection of HER-2 positive tumors in mice

<u>Giulio Paciotti</u>^{1*}, Kayla E. Minser¹, Caroline L. Weldon¹, Andrew Gomez¹, Todor Karaulanov¹, Helen J. Hathaway², William H. Anderson¹, Christopher P. Nettles¹, Dale L. Huber³, and Erika C. Vreeland¹

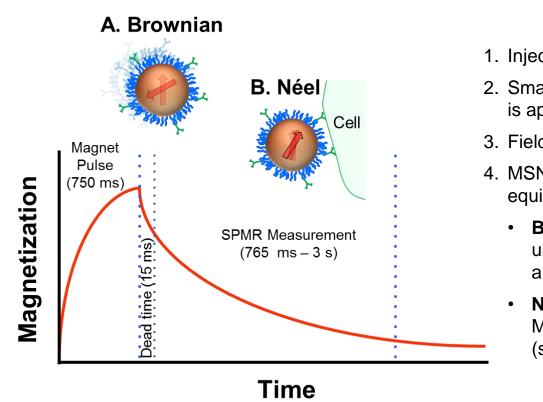

¹Imagion Biosystems, Inc., Albuquerque, NM, USA

²University of New Mexico Health Sciences Center and University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA ³Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, USA

*Corresponding email: Giulio.Paciotti@imagionbio.com

Introduction

- The MagSenseTM platform consists of superconducting quantum interference devices (SQUIDs) to detect tumor targeted MagSense™ nanoparticles (MSNPs) that are specifically bound to cancer cells.
- The detection relies on SQUIDs high sensitivity to magnetic field produced by the superparamagnetic relaxation (SPMR) of the NPs.

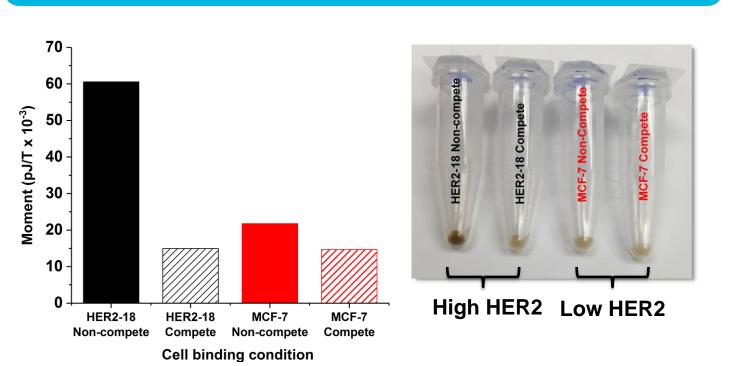


Conceptual MagSense™ clinical instrument

Objectives

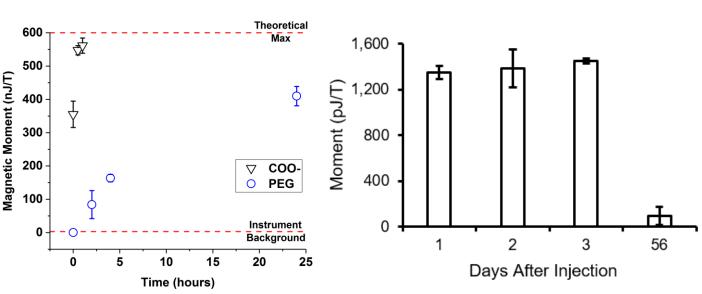
- Biosystems, Inc. developing Imagion is MagSense™ platform for the sensitive and specific detection of HER2-positive breast cancer.
- Preclinical studies will generate validation data for the first clinical trial, wherein the MagSense-anti-HER2 platform will be used to accurately HER2-positive breast cancer

The SPMR Measurement

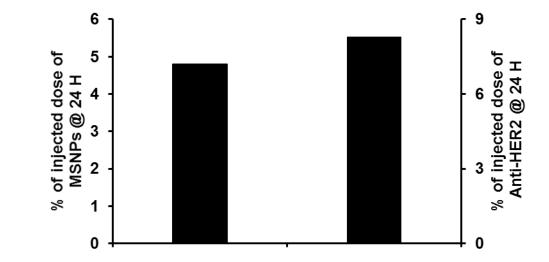

- 1. Inject anti-HER2 MSNPs
- 2. Small magnetizing pulse is applied
- 3. Field turned off
- 4. MSNPs relax to their equilibrium states.
 - **Brownian** motion of unbound MSNPs (fast and undetectable)
 - **Néel** relaxation of MSNPs bound to cells (slow and detectable)

SPMR only detects nanoparticles bound to cells/tissues

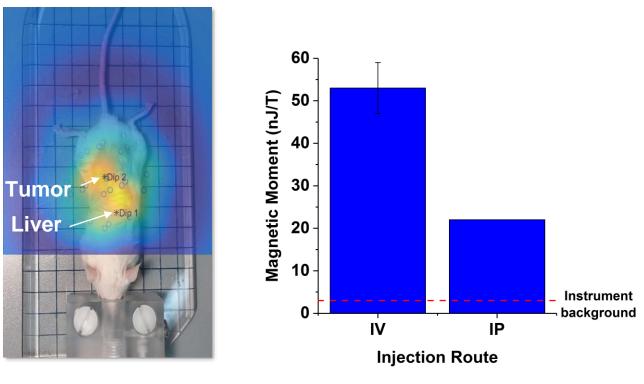
Characterization of MSNPs


Analytical Test	Method
Particle Size	Small angle X-ray scattering (SAXS)
Hydrodynamic size	Dynamic light scattering (DLS)
Anti-HER2 Content	Direct ELISA
Specificity	Competition ELISA
Specificity	SPMR, digital photography
Stealth	Zeta potential, agarose gel electrophoresis

In Vitro Pharmacology

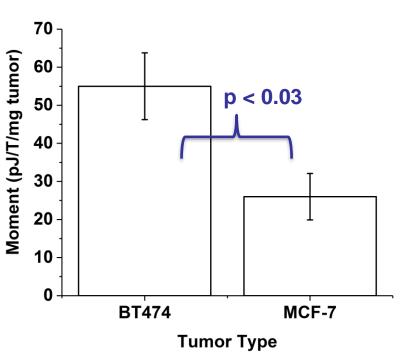

Competitive binding of anti-HER2 MSNPs can be correlated to the HER2 cell expression

In Vivo Pharmacology

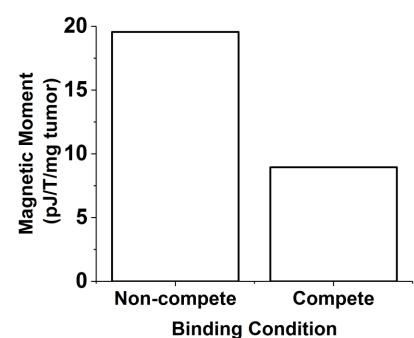


PEGylated MSNPs degrade PEGylation significantly by 8 weeks post injection increases the circulation time of MSNPs

Anti-HER2 MSNPs remain stable in circulation



In Vivo Diagnosis


4% MSNP delivery to tumor

In vivo specificity

SPMR signal corresponds with HER2 expression in

In vivo competition

~50% competition of anti-HER2 MSNPs by native anti-HER2

Conclusions and Future Work

- Developed anti-HER2 conjugated, PEGylated MSNPs that specifically bind to HER2 expressing breast cancer cells in vitro and in vivo and degrade within 8 weeks
- Future work is focused on clinical translation of the MagSense™ anti-HER2 platform for detection of breast cancer metastases in the lymph nodes.

University of New Mexico Comprehensive Cancer Center